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Consider the equation

y(n) = p(x, y, y′, . . . , y(n−1))|y|k sign y, (1)

n ≥ 2, k > 1,

p(x, y0, . . . , yn−1) > 0, p ∈ C(Rn).

I. T. Kiguradze posed the problem on asymptotic behavior of all
non-extensible solutions to this equation such that

lim
x→x∗−0

y(x) =∞. (2)

.
He found the asymptotic formulae for such solutions to equation
(1) with n = 2.

See [Kiguradze I. T., Chanturia T. A. Asymptotic Properties of
Solutions of Nonautonomous Ordinary Differential Equations.
Kluver Academic Publishers, Dordreht-Boston-London. 1993.]



The problem was completely solved for n = 3 and n = 4

(I.Astashova).
For equation (1) with 2 ≤ n ≤ 11, existence was proved of an
(n− 1)-parametric family of solutions with the vertical asymptote
x = x∗, all having the form

y(x) = C(x∗ − x)−α(1 + o(1)), x→ x∗ − 0, (3)

with α = n
k−1 , C =

(
α(α+1)...(α+n−1)

p0

) 1
k−1

,

p0 = lim p (x, y0, y1 . . . , yn−1) ,

x→ x∗ − 0, y0 →∞, y1 →∞, . . . , yn−1 →∞,

p0 > 0.

if the following two conditions hold:



1. The continuous positive function p(x, y0, . . . , yn−1) has a limit
p0 = const > 0 as x→ x∗ − 0, y0 →∞, . . . , yn−1 →∞, and for
some γ > 0 it holds

p(x, y0, . . . , yn−1)− p0 = O

|x∗ − x|γ +

n−1∑
j=0

yj
−γ

 .

2. For some K1 > 0 and µ > 0 in a neighborhood of x∗ for rather
large y0, . . . , yn−1, z0, . . . , zn−1 it holds∣∣p(x, y0, . . . , yn−1)− p(x, z0, . . . , zn−1)∣∣ ≤

K1 max
j

∣∣yj−µ − zj−µ∣∣.



It was also proved for the equation

y(n) = (−1)n|y|k sign y, k > 1, (4)

with n = 3 and n = 4 that all its Kneser solutions, i.e. solutions
defined near +∞ and satisfying in their domains the inequalities

(−1)jy(j) > 0, j = 0, . . . , n− 1,

have the form
y(x) = C(x− x∗)−α (5)

with arbitrary x∗ and the same C and α as in (3).



See
[Astashova I. V. Asymptotic behavior of solutions of certain
nonlinear differential equations, In Reports of extended session of a
seminar of the I.N.Vekua Institute of Applied Mathematics. Tbilisi.
1985. v. 1. N 3. p.9–11. (Russian)],

[Astashova I. V. Application of Dynamical Systems to the Study of
Asymptotic Properties of Solutions to Nonlinear Higher-Order
Differential Equations, Journal of Mathematical Sciences. Springer
Science+Business Media. 126 (2005), no. 5, 1361-1391.]



For the equation
y(n) = |y| k, k > 1, (6)

a negative answer to a conjecture posed by Kiguradze was obtained.
It was proved, that for any N and K > 1 there exist an integer
n > N and k ∈ R, 1 < k < K, such that equation (6) has a
solution

y(x) = (x∗ − x)−α h(log (x∗ − x)), (7)

where h is a periodic positive nonconstant function on R.

See [Kozlov V. A. On Kneser solutions of higher order nonlinear
ordinary differential equations. Ark. Mat., 1999, vol. 37, no. 2,
p. 305–322.]



We proved the following result
Theorem For 12 ≤ n ≤ 14 there exists k > 1 such that equation
(6) has a solution y(x) with

y(j)(x) = (x∗ − x)−α−j hj( ln(x∗ − x) ),

j = 0, 1, . . . , n− 1,

where hj are periodic positive non-constant functions on R.

(for n = 12 with S.Vyun).

Note that the substitution x 7→ −x transforms this y(x) into a
Kneser solution to equation (4). And the latter solution does not
match the standard form given by (5).



Reference 1. To prove this result we used method based on the
Hopf Bifurcation theorem.

See [J. E. Marsden, M. McCracken. The Hopf bifurcation and its
applications. Springer- Verlag, New York, 1976, XIII, 408 pp.]

This method does not allow to obtain the same result for n < 12,

but this does not mean that there is no solution of the form given
by (7) if 5 ≤ n ≤ 11.



Theorem (Hopf). Consider the α-parameterized dynamical system
ẋ = Lαx+Qα(x) in a neighborhood of 0 ∈ Rn with linear
operators Lα and smooth enough functions Qα(x) = O

(
|x|2
)
as

x→ 0. Let λα and λ̄α be complex conjugated eigenvalues of the
operators Lα. Suppose Reλα̃ = Reλ̄α̃ = 0 for some α̃ and the
operator Lα̃ has no other eigenvalues with zero real part.
If Redλαdα (α̃) 6= 0, then there exist continuous mappings α(ε) ∈ R,

T (ε) ∈ R, and b(ε) ∈ Rn such that α(0) = α̃, T (0) = 2π/Imλα̃,

b(0) = 0, b(ε) 6= 0 for ε 6= 0, and the solutions of the tasks

ẋ = Lα(ε)x+Qα(ε)(x), x(0) = b(ε)

are T (ε)-periodic and non-constant.



Reference 2. To apply the Hopf Bifurcation theorem we
investigate the roots of the algebraic equation

n∏
j=1

(α+ j) =

n−1∏
j=0

(α+ j + λ). (8)

If this equation has a pair of pure imagine roots we can apply the
Hopf Bifurcation theorem.



In order to investigate asymptotic behavior of all ultimately positive
solutions to the equation

y(n) = |y|k sign y, (9)

we used the auxiliary variables

uj = y(j)y−βj with βj = 1 +
j

α
, j = 1, . . . , n− 1,

and a new independent variable given by

t =

∫ x

x0

y(ξ)
1
α dξ.

Equation (9) is transformed by this way into the system
u̇1 = u2 − β1u21,

u̇j = uj+1 − βju1uj , j = 2, . . . , n− 2,

u̇n−1 = 1− βn−1u1un−1.

(10)



In the domain with uj > 0, this system has a single fixed point.
The related constant trajectory corresponds to the family of
standard solutions to (6) given by the power function

y(x) = C(x∗ − x)−α, x < x∗.

For 2 ≤ n ≤ 4, it is proven that all "positive" trajectories of system
(10) tend to the fixed point. Accordingly, all ultimately positive
solutions to (6) have vertical asymptotes with power-law
asymptotic behavior, i. e.

y(x) = C(x∗ − x)−α(1 + o(1)) as x→ x∗.



The same result for equation (1) is proved using the same variables
uj and t, but with a more complicated system similar to (10).

We can consider {uj} as the set of coordinate functions producing
a chart on a compact "phase"manifold. Together with other similar
charts given by similar formulae like
vj = y(j) |y′|−βj/β1 , j = 0, 2, . . . , n− 1, we can cover the whole
"phase"manifold and globally define a dynamical system expanding
system (10). This allows to obtain all possible types of behavior for
solutions to equations (4) and (9) with n = 3 and n = 4. See an
illustration for n = 3 :





For equation (1) of higher orders, existence of (n− 1)-parametrical
family of solutions with the same power-low asymptotic behavior
can be proven by using the substitution x = et, y = (C + v) e−αt

transforming equation (1) into the system

dV

dt
= AV + F (V ) +G(t, V ),

where V (t) is a vector function with components Vj =
djv

dtj
,

j = 0, . . . , n− 1, A is a constant n× n matrix with eigenvalues
satisfying equation (8), F and G are vector functions with all zero
components but the last ones equal to

Fn−1(V ) = po ·
(

(C + V0)
k − Ck − kCk−1V0

)
,

Gn−1(t, V ) = (C + V0)
k
(
p̃(t, V0, . . . , Vn−1)− p0

)
.











Astashova I.V. : Qualitative properties of solutions to quasilinear
ordinary differential equations. In: Astashova I.V (ed.) Qualitative
Properties of Solutions to Differential Equations and Related Topics
of Spectral Analysis: scientific edition, pp. 22-290. M.:
UNITY-DANA (2012) 647 p. (Russian)
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http://www.advancesindifferenceequations.com/content/2013/1/220



Computer calculations give approximate values of α providing
equation (8) to have a pure imaginary root λ. They are, with
corresponding values of k, as follows:
if n = 12, then α ≈ 0.56, k ≈ 22.4;

if n = 13, then α ≈ 1.44, k ≈ 10.0;

if n = 14, then α ≈ 2.37, k ≈ 6.9.



Consider the equation

y(n) + p0 |y|k sign y = 0, (11)

n ≥ 2, k > 1, p0 6= 0.

Hereafter we use the notation

α =
n

k − 1
. (12)

Theorem
For any integer n > 2 and real k > 1 there exists a non-constant
oscillatory periodic function h(s) such that for any p0 > 0 and
x∗ ∈ R the function

y(x) = p
1

k−1

0 (x∗ − x)−αh ( log(x∗ − x) ) , −∞ < x < x∗, (13)

is a solution to equation (11).



Corollary

For any integer even n > 2 and real k > 1 there exists a
non-constant oscillatory periodic function h(s) such that for any
p0 > 0 and x∗ ∈ R the function

y(x) = p
1

k−1

0 (x− x∗)−αh ( log(x− x∗) ) , x∗ < x <∞, (14)

is a solution to equation (11).

Corollary

For any integer odd n > 2 and real k > 1 there exists a
non-constant oscillatory periodic function h(s) such that for any
p0 < 0 and x∗ ∈ R the function

y(x) = |p0|
1

k−1 (x− x∗)−αh ( log(x− x∗) ) , x∗ < x <∞, (15)

is a solution to equation (11).



(with V.Rogachev)

Theorem
For any integer m ≥ 2 and even n > 2, and any real k > 1, p0 > 0,

−∞ < a < b < +∞, equation (11) has a solution defined on the
segment [a, b], vanishing at its end points a and b, and having
exactly m zeros on the segment [a, b].

Theorem
For any integer m ≥ 2 and odd n > 2, и and any real k > 1,

p0 6= 0, −∞ < a < b < +∞, equation (11) has a solution defined
on the segment [a, b], vanishing at its end points a and b, and
having exactly m zeros on the segment [a, b].



Theorem
For any integer n > 2 and real k > 1, p0 > 0, −∞ < a < b < +∞,
equation (11) has a solution defined on the half-open interval [a, b),

vanishing at its end point a and having a countable number of
zeros on the interval [a, b).

Theorem
For any integer odd n > 2 and real k > 1, p0 < 0,

−∞ < a < b < +∞, equation (11) has a solution defined on the
half-open interval (a, b], vanishing at its end point b and having a
countable number of zeros on the interval (a, b].


