Nonlinear Nonlocal Boundary Value Problems
 for Singular in a Phase Variable Second Order Differential Equations

Ivan Kiguradze
A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia

E-mail: kig@rmi.ge

In a finite interval $] a, b[$, we consider the nonlinear differential equation

$$
\begin{equation*}
u^{\prime \prime}=f(t, u) \tag{1}
\end{equation*}
$$

with the nonlinear nonlocal boundary conditions of one of the following three types:

$$
\begin{array}{ll}
u(a)=\int_{a}^{b} h_{1}(u(s)) d \ell_{1}(s), & u(b)=\int_{a}^{b} h_{2}(u(s)) d \ell_{2}(u) \\
u(a)=\int_{a}^{b} h_{1}(u(s)) d \ell_{1}(s), & u(b)=\int_{a}^{b} h_{2}(u(s)) d \ell_{0}(u) \\
u(a)=\int_{a}^{b} h_{1}(u(s)) d \ell_{1}(s), & u^{\prime}(b)=\int_{a}^{b} h_{2}(u(s)) d \ell_{2}(u) \tag{4}
\end{array}
$$

Here, $f:] a, b[\times] 0,+\infty\left[\rightarrow \mathbb{R}_{-}\right.$is a measurable in the first and continuous in the second argument function, $h_{i}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}(i=1,2)$ are continuous functions, $\left.\left.\mathbb{R}_{-}=\right]-\infty, 0\right], \mathbb{R}_{+}=[0,+\infty[$, $a<b_{0}<b$, and $\ell_{i}:[a, b] \rightarrow \mathbb{R}_{+}(i=1,2)$ and $\ell_{0}:\left[a, b_{0}\right] \rightarrow \mathbb{R}_{+}$are nondecreasing functions such that

$$
\ell_{i}(b)-\ell_{i}(a)=1 \quad(i=1,2), \quad \ell_{0}\left(b_{0}\right)-\ell_{0}(a)=1
$$

Let $C([a, b] ; \mathbb{R})$ be the space of continuous functions $u:[a, b] \rightarrow \mathbb{R}$ and let $\widetilde{C}_{l o c}^{1}(] a, b[; \mathbb{R})$ be the space of continuously differentiable functions $u:] a, b[\rightarrow \mathbb{R}$ whose first derivatives are absolutely continuous on $[a+\varepsilon, b-\varepsilon]$ for arbitrarily small $\varepsilon>0$.

A function $u \in C([a, b] ; \mathbb{R}) \cap \widetilde{C}_{l o c}^{1}(] a, b[; \mathbb{R})$ is said to be a positive solution of the equation (1) if

$$
u(t)>0 \text { for } a<t<b
$$

and

$$
\left.u^{\prime \prime}(t)=f(t, u(t)) \text { for almost all } t \in\right] a, b[
$$

A positive solution u of the equation (1) is said to be a positive solution of the problem $(1),(k)$, where $k \in\{2,3\}$, (of the problem (1), (4)) if it satisfies the equalities (k) (has a finite limit $u^{\prime}(b)=\lim _{t \rightarrow b} u^{\prime}(t)$ and satisfies the equalities (4)).

The theorems below on the existence of a positive solution of the problems $(1),(k)(k=2,3,4)$ deal with the cases where the function f in the domain $] a, b[\times] 0,+\infty[$ satisfies the inequality

$$
\begin{equation*}
-p_{1}(t, x)-p_{2}(t, x)(1+x) \leq f(t, x) \leq-p_{0}(t, x) \tag{5}
\end{equation*}
$$

where $\left.p_{i}:\right] a, b[\times] 0,+\infty\left[\rightarrow \mathbb{R}_{+}(i=0,1,2)\right.$ are measurable in the first and nonincreasing in the second argument functions, and the functions $h_{i}(i=1,2)$ satisfy one of the following three conditions:

$$
\begin{gather*}
\limsup _{x \rightarrow+\infty} \frac{h_{i}(x)}{x} \leq r<1 \quad(i=1,2) \tag{6}\\
\limsup _{x \rightarrow+\infty} \frac{h_{1}(x)}{x} \leq r<1, \quad h_{2}(x) \leq x \text { for } x \in \mathbb{R}_{+} \tag{7}\\
\limsup _{x \rightarrow+\infty} \frac{h_{1}(x)}{x}+(b-a) \limsup _{x \rightarrow+\infty} \frac{h_{2}(x)}{x} \leq r<1 \tag{8}
\end{gather*}
$$

We are mainly interested in the case

$$
\lim _{x \rightarrow 0} p_{i}(t, x)=+\infty \text { for } t \in I \quad(i=0,1,2)
$$

where $I \subset[a, b]$ is a set of positive measure. In this case,

$$
\lim _{x \rightarrow 0} f(t, x)=-\infty \text { for } t \in I
$$

i.e. the equation (1) is singular in the phase variable.

The following theorems are valid.
Theorem 1. If along with (5) and (6) the conditions

$$
\begin{gather*}
0<\int_{a}^{b}(t-a)(b-t) p_{i}(t, x) d t<+\infty \text { for } x>0 \quad(i=0,1) \tag{9}\\
\\
\lim _{x \rightarrow+\infty} \int_{a}^{b}(t-a)(b-t) p_{2}(t, x) d t<(1-r)(b-a)
\end{gather*}
$$

are fulfilled, then the problem (1), (2) has at least one positive solution.
Theorem 2. If along with (5), (7) and (9) the condition

$$
\lim _{x \rightarrow+\infty} \int_{a}^{b}(t-a)(b-t) p_{2}(t, x) d t<(1-r)\left(b-b_{0}\right)
$$

holds, then the problem (1), (3) has at least one positive solution.
Theorem 3. If along with (5) and (8) the conditions

$$
\begin{gathered}
0<\int_{a}^{b}(t-a) p_{i}(t, x) d t<+\infty \text { for } x>0 \quad(i=0,1) \\
\lim _{x \rightarrow+\infty} \int_{a}^{b}(t-a) p_{2}(t, x) d t<(1-r)(b-a)
\end{gathered}
$$

are fulfilled, then the problem (1), (4) has at least one positive solution.

Note that if the conditions of Theorem 1 or 2 (of Theorem 3) are fulfilled but

$$
\int_{a}^{b} p_{i}(t, x) d t=+\infty \text { for } x>0 \quad(i=0,1)
$$

then the equation (1) has a nonintegrable singularity in the time variable at the point $t=a$ or $t=b$ (at the point $t=a$).

As an example, we consider the differential equation

$$
\begin{equation*}
u^{\prime \prime}=-\sum_{k=1}^{n} \frac{f_{k}(t)}{q_{k}(u)} u^{\lambda_{k}}-\frac{f_{0}(t)}{q_{0}(u)} \tag{10}
\end{equation*}
$$

where

$$
0<\lambda_{k} \leq 1 \quad(k=1, \ldots, n)
$$

$\left.f_{k}:\right] a, b\left[\rightarrow \mathbb{R}_{+}(k=0,1, \ldots, n)\right.$ are measurable functions, and $\left.q_{k}:\right] 0,+\infty[\rightarrow] 0,+\infty[(k=$ $0,1, \ldots, n)$ are continuous, nondecreasing functions such that

$$
\lim _{x \rightarrow 0} q_{k}(x)=0 \quad(k=0,1, \ldots, n)
$$

Theorems 1-3 result in the following corollaries.
Corollary 1. If

$$
\begin{gather*}
0<\int_{a}^{b}(t-a)(b-t) f_{0}(t) d t<+\infty, \quad \int_{a}^{b}(t-a)(b-t) f_{k}(t) d t<+\infty \quad(k=1, \ldots, n) \tag{11}\\
\\
\limsup _{x \rightarrow+\infty} \frac{h_{i}(x)}{x}<1 \quad(i=1,2)
\end{gather*}
$$

and

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} q_{k}(x)=+\infty \quad(k=1, \ldots, n) \tag{12}
\end{equation*}
$$

then the problem (10), (2) has at least one positive solution.
Corollary 2. If along with (11) and (12) the condition

$$
\lim _{x \rightarrow+\infty} \frac{h_{1}(x)}{x}<1, \quad h_{2}(x) \leq x \text { for } x>0
$$

holds, then the problem (10), (3) has at least one positive solution.
Corollary 3. If

$$
\begin{gathered}
0<\int_{a}^{b}(t-a) f_{0}(t) d t<+\infty, \quad \int_{a}^{b}(t-a) f_{k}(t) d t<+\infty \quad(k=1, \ldots, n) \\
\limsup _{x \rightarrow+\infty} \frac{h_{1}(x)}{x}+(b-a) \limsup _{x \rightarrow+\infty} \frac{h_{2}(x)}{x}<1
\end{gathered}
$$

and the condition (12) is fulfilled, then the problem (10), (4) has at least one positive solution.

Acknowledgements

Supported by the Shota Rustaveli National Science Foundation (Project \# FR/317/5-101/12).

