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Let
D = {(t, x, y) : t > 0, x > 0, y < 0} , R+ = [0,+∞[,

and let f : D → R+ be a continuous function. A continuous function u : R+ → R+

is said to be the Kneser solution of the equation

u′′ = f(t, u, u′) (1)

if it is twice continuously differentiable in the interval ]0,+∞[ and in this interval
satisfies the inequalities

u(t) > 0, u′(t) < 0

and the differential equation (1).
We consider the problem on the existence of a Kneser solution of equation (1),

satisfying the condition
ϕ(u) = c, (2)

where ϕ : C([0, a];R+) → R+ is a continuous, nondecreasing functional, a > 0, and
c > 0.

We name this problem the nonlinear Kneser problem since it was first studied by
Kneser in the case, where ϕ(u) ≡ u(0), f(t, x, y) ≡ f0(t, x), and f0 : R+×R+ → R+

is a continuous function such that f0(t, 0) ≡ 0.
The Kneser type problems for nonlinear differential equations and systems, not

having singularities in phase variables, are studied in detail (see, [1]–[8], and the
references therein).

We are interested in the case, where the function f satisfies the inequality

g0(t) ≤ xλ|y|µf(t, x, y) ≤ g1(t)

in the domain D. Here λ and µ are nonnegative constants, λ + µ > 0, and gi :
]0,+∞[→]0, +∞[ (i = 0, 1) are continuous functions. In this case

lim
x→0, y→0

f(t, x, y) = +∞ for t > 0,

i.e. equation (1) has singularities in phase variables.
The Kneser problem for the differential equation with a singularity in one of the

phase variables first was investigated by I. Kiguradze [9]. However, in this paper
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there is considered not the general differential equation but the Emden–Fowler type
higher order differential equation u(n) = p(t)u−λ.

A Kneser solution u of equation (1) is called vanishing at infinity if lim
t→+∞u(t) =

0, and it is called remote from zero if lim
t→+∞u(t) > 0.

Theorem 1 If equation (1) has a Kneser solution, then

+∞∫

t

g0(s)ds < +∞ for t > 0,

+∞∫

0




+∞∫

t

g0(s)ds




1
µ+1

dt < +∞, (3)

and u(t) > v0(t; δ) for t ≥ 0, where δ = lim
t→+∞u(t),

v0(t; δ) =


δν + (1 + µ)

1
1+µ ν

+∞∫

t




+∞∫

s

g0(x)dx




1
1+µ

ds




1
ν

, and ν =
1 + λ + µ

1 + µ
.

Corollary 1 If condition (3) is fulfilled and c ≤ ϕ(v0(·; 0)), then equation (1) has
no Kneser solution, satisfying condition (2).

Theorem 2 If

+∞∫

t

g1(s)ds < +∞ for t > 0,

+∞∫

0




+∞∫

t

g1(s)ds




1
1+µ

dt < +∞, (4)

then for any positive number δ equation (1) has at least one Kneser solution u such
that u(t) → δ as t → +∞.

According to Corollary 1, for small c problem (1), (2) has no Kneser solution.
Thus we can expect the solvability of that problem only for large c.

Suppose condition (4) holds. Then obviously condition (3) is satisfied as well.
We introduce the function

v1(t; δ) = δ +

+∞∫

t


(1 + µ)

+∞∫

s

g1(x)
vλ
0 (x; δ)

dx




1
1+µ

ds for t ≥ 0, δ > 0,

and the number c0 = inf{ϕ(v1(·; δ) : δ > 0}.

Theorem 3 Let the function g1 satisfy condition (4), and

lim
x→+∞ϕ(x) = +∞. (5)

If, moreover, c > c0, then problem (1),(2) has at least one Kneser solution.
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Theorem 4 Let g1(t) ≡ `g0(t), ` = const ≥ 1, and let there exist numbers α and β
such that

lim inf
t→0

(tαg0(t)) > 0, lim sup
t→0

(tαg0(t)) < +∞,

lim inf
t→+∞

(
tβg0(t)

)
> 0, lim sup

t→+∞

(
tβg0(t)

)
< +∞.

Let, moreover, the functional ϕ satisfy condition (5). Then the following assertions
are equivalent:

(i) α < 2 + µ, β > 2 + µ;
(ii) equation (1) has at least one remote from zero Kneser solution;
(iii) equation (1) has at least one vanishing at infinity Kneser solution;
(iv) for any sufficiently large c > 0, problem (1), (2) has at least one Kneser

solution.
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