The Nonlinear Kneser Problem for Singular in Phase Variables Second Order Nonlinear Differential Equations

Nino Partsvania ${ }^{1,2}$
${ }^{1}$ A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University
${ }^{2}$ International Black Sea University, Tbilisi, Georgia
E-mail: ninopa@rmi.ge

Let

$$
D=\{(t, x, y): t>0, x>0, y<0\}, \quad R_{+}=[0,+\infty[,
$$

and let $f: D \rightarrow R_{+}$be a continuous function. A continuous function $u: R_{+} \rightarrow R_{+}$ is said to be the Kneser solution of the equation

$$
\begin{equation*}
u^{\prime \prime}=f\left(t, u, u^{\prime}\right) \tag{1}
\end{equation*}
$$

if it is twice continuously differentiable in the interval $] 0,+\infty[$ and in this interval satisfies the inequalities

$$
u(t)>0, \quad u^{\prime}(t)<0
$$

and the differential equation (1).
We consider the problem on the existence of a Kneser solution of equation (1), satisfying the condition

$$
\begin{equation*}
\varphi(u)=c, \tag{2}
\end{equation*}
$$

where $\varphi: C\left([0, a] ; R_{+}\right) \rightarrow R_{+}$is a continuous, nondecreasing functional, $a>0$, and $c>0$.

We name this problem the nonlinear Kneser problem since it was first studied by Kneser in the case, where $\varphi(u) \equiv u(0), f(t, x, y) \equiv f_{0}(t, x)$, and $f_{0}: R_{+} \times R_{+} \rightarrow R_{+}$ is a continuous function such that $f_{0}(t, 0) \equiv 0$.

The Kneser type problems for nonlinear differential equations and systems, not having singularities in phase variables, are studied in detail (see, [1]-[8], and the references therein).

We are interested in the case, where the function f satisfies the inequality

$$
g_{0}(t) \leq x^{\lambda}|y|^{\mu} f(t, x, y) \leq g_{1}(t)
$$

in the domain D. Here λ and μ are nonnegative constants, $\lambda+\mu>0$, and g_{i} : $] 0,+\infty[\rightarrow] 0,+\infty[(i=0,1)$ are continuous functions. In this case

$$
\lim _{x \rightarrow 0, y \rightarrow 0} f(t, x, y)=+\infty \text { for } t>0
$$

i.e. equation (1) has singularities in phase variables.

The Kneser problem for the differential equation with a singularity in one of the phase variables first was investigated by I. Kiguradze [9]. However, in this paper
there is considered not the general differential equation but the Emden-Fowler type higher order differential equation $u^{(n)}=p(t) u^{-\lambda}$.

A Kneser solution u of equation (1) is called vanishing at infinity if $\lim _{t \rightarrow+\infty} u(t)=$ 0 , and it is called remote from zero if $\lim _{t \rightarrow+\infty} u(t)>0$.

Theorem 1 If equation (1) has a Kneser solution, then

$$
\begin{equation*}
\int_{t}^{+\infty} g_{0}(s) d s<+\infty \text { for } t>0, \quad \int_{0}^{+\infty}\left(\int_{t}^{+\infty} g_{0}(s) d s\right)^{\frac{1}{\mu+1}} d t<+\infty \tag{3}
\end{equation*}
$$

and $u(t)>v_{0}(t ; \delta)$ for $t \geq 0$, where $\delta=\lim _{t \rightarrow+\infty} u(t)$,

$$
v_{0}(t ; \delta)=\left[\delta^{\nu}+(1+\mu)^{\frac{1}{1+\mu}} \nu \int_{t}^{+\infty}\left(\int_{s}^{+\infty} g_{0}(x) d x\right)^{\frac{1}{1+\mu}} d s\right]^{\frac{1}{\nu}}, \quad \text { and } \nu=\frac{1+\lambda+\mu}{1+\mu} .
$$

Corollary 1 If condition (3) is fulfilled and $c \leq \varphi\left(v_{0}(\cdot ; 0)\right)$, then equation (1) has no Kneser solution, satisfying condition (2).

Theorem 2 If

$$
\begin{equation*}
\int_{t}^{+\infty} g_{1}(s) d s<+\infty \text { for } t>0, \quad \int_{0}^{+\infty}\left(\int_{t}^{+\infty} g_{1}(s) d s\right)^{\frac{1}{1+\mu}} d t<+\infty \tag{4}
\end{equation*}
$$

then for any positive number δ equation (1) has at least one Kneser solution u such that $u(t) \rightarrow \delta$ as $t \rightarrow+\infty$.

According to Corollary 1, for small c problem (1), (2) has no Kneser solution. Thus we can expect the solvability of that problem only for large c.

Suppose condition (4) holds. Then obviously condition (3) is satisfied as well. We introduce the function

$$
v_{1}(t ; \delta)=\delta+\int_{t}^{+\infty}\left[(1+\mu) \int_{s}^{+\infty} \frac{g_{1}(x)}{v_{0}^{\lambda}(x ; \delta)} d x\right]^{\frac{1}{1+\mu}} d s \text { for } t \geq 0, \quad \delta>0
$$

and the number $c_{0}=\inf \left\{\varphi\left(v_{1}(\cdot ; \delta): \delta>0\right\}\right.$.
Theorem 3 Let the function g_{1} satisfy condition (4), and

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \varphi(x)=+\infty . \tag{5}
\end{equation*}
$$

If, moreover, $c>c_{0}$, then problem (1),(2) has at least one Kneser solution.

Theorem 4 Let $g_{1}(t) \equiv \ell g_{0}(t), \ell=$ const ≥ 1, and let there exist numbers α and β such that

$$
\begin{aligned}
& \liminf _{t \rightarrow 0}\left(t^{\alpha} g_{0}(t)\right)>0, \quad \limsup _{t \rightarrow 0}\left(t^{\alpha} g_{0}(t)\right)<+\infty \\
& \liminf _{t \rightarrow+\infty}\left(t^{\beta} g_{0}(t)\right)>0, \quad \limsup _{t \rightarrow+\infty}\left(t^{\beta} g_{0}(t)\right)<+\infty
\end{aligned}
$$

Let, moreover, the functional φ satisfy condition (5). Then the following assertions are equivalent:
(i) $\alpha<2+\mu, \beta>2+\mu$;
(ii) equation (1) has at least one remote from zero Kneser solution;
(iii) equation (1) has at least one vanishing at infinity Kneser solution;
(iv) for any sufficiently large $c>0$, problem (1), (2) has at least one Kneser solution.

Acknowledgements

Supported by the Shota Rustaveli National Science Foundation (Project \# FR/317/5101/12).

References

1. T. A. Chanturia, On the Kneser type problem for systems of ordinary differential equations. (Russian) Mat. zametki 15 (1974), No. 6, 897-906.
2. C. V. Coffman, Non-linear differential equations on cones in Banach spaces. Pacif. J. Math. 14 (1964), No. 1, 9-15.
3. P. Hartman and A. Wintner, On the non-increasing solutions of $y^{\prime \prime}=f\left(x, y, y^{\prime}\right)$. Amer. J. Math. 73 (1951), No. 2, 390-404.
4. I. T. Kiguradze, On non-negative non-increasing solutions of non-linear second order differential equations. Ann. Mat. Pura ed Appl. 81 (1969), 169-192.
5. I. T. Kiguradze, On monotone solutions of nonlinear n-th order ordinary differential equations. (Russian) Izv. Akad. Nauk SSSR. Ser. Mat. 33 (1969), No. 6, 1373-1398; English transl.: Math. USSR, Izv. 3 (1969), 1293-1317.
6. I. T. Kiguradze, Some singular boundary value problems for ordinary differential equations. (Russian) Tbilisi University Press, Tbilisi, 1975.
7. I. T. Kiguradze and I. Rachůnková, On the solvability of a nonlinear Kneser type problem. (Russian) Differentsial'nye Uravneniya 15 (1979), No. 10, 1754-1765; English transl.: Differ. Equations 15 (1980), 1248-1256.
8. I. Rachůnková, On a Kneser problem for a system of nonlinear ordinary differential equations. Czech. Math. J. 31 (1981), No. 1, 114-126.
9. I. Kiguradze, On Kneser solutions of the Emden-Fowler differential equation with a negative exponent. Tr. In-ta matematiki NAN Belarusi 4 (2000), 69-77.
