ASYMPTOTIC REPRESENTATIONS OF SOLUTIONS OF DIFFERENTIAL EQUATIONS WITH REGULARLY VARYING NONLINEARITIES

V.M. Evtukhov

Odessa I. I. Mechnikov National University. Ukraine.

e-mail: emden@farlep.net

Consider the differential equation

$$y^{(n)} = \alpha_0 p(t) \prod_{j=0}^{n-1} \varphi_j(y^{(j)}),$$
(1)

where $\alpha_0 \in \{-1; 1\}$, $p : [a, \omega[\longrightarrow]0, +\infty[$ - is a continuous function, $\varphi_j : \Delta_{Y_j} \longrightarrow]0, +\infty[$ $(j = \overline{0, n-1})$ continuous regularly varying at $y^{(j)} \longrightarrow Y_j$ functions of orders σ_j , $-\infty < a < \omega \le +\infty$, Δ_{Y_j} is one-sided
neighbourhood of Y_j , Y_j is either 0, or $\pm \infty$.

Measurable function $\varphi : \Delta_Y \longrightarrow]0, +\infty[$, where Y is either 0, or $\pm\infty$ and Δ_Y is one-sided neighbourhood of Y, is regularly varying at $y \to Y$ (see [1]), if there exists number $\sigma \in \mathbb{R}$ such that

$$\lim_{\substack{y \to Y \\ \varphi \in \Delta Y}} \frac{\varphi(\lambda y)}{\varphi(y)} = \lambda^{\sigma} \quad \text{for any} \quad \lambda > 0.$$

In this case the number σ is called the order of regularly varying function. Regularly varying as $y \to Y$ zero-order function is called slowly varying function. Every regularly varying as $y \to Y$ function of order σ has the representation

$$\varphi(y) = |y|^{\sigma} L(y), \tag{2}$$

where $L: \Delta_Y \longrightarrow]0, +\infty[$ – is a slowly varying function as $y \to Y$.

Moreover, let's assume that a slowly varying function $L: \Delta_Y \longrightarrow]0, +\infty[$ satisfies Condition S_0 , if

$$L\left(\nu e^{[1+o(1)]\ln|y|}\right) = L(y)[1+o(1)] \text{ if } y \to Y \quad (y \in \Delta_Y)$$

where $\nu = \operatorname{sign} y$.

For example, the following functions are slowly varying as $y \to Y$:

$$|\ln|y||^{\gamma_1}, \quad \ln^{\gamma_2} |\ln|y||, \quad \gamma_1, \gamma_2 \in \mathbb{R}, \quad \exp(|\ln|y||^{\gamma_3}), \quad 0 < \gamma_3 < 1, \quad \exp\left(\frac{\ln|y|}{\ln|\ln|y||}\right);$$

they have a nonzero finite limit as $\,y \to Y\,.$

Among these functions, the first two satisfy the *Condition* S_0 , as well as many other functions. By the definition of a regularly varying functions the differential equation (1) is asymptotically close at $y^{(j)} \longrightarrow Y_j$ $(j = \overline{0, n-1})$ to the equation

$$y^{(n)} = \alpha_0 p(t) \prod_{j=0}^{n-1} |y^{(j)}|^{\sigma_j}.$$

Asymptotic behavior of solutions of this equation is investigated in [2]-[6], as well as in many other works.

In case of regularly varying nonlinearities which are distinct from powers, asymptotic representation of solutions were established at n = 2 in works [7]-[11] and at $n \ge 2$, $\varphi_i(y^{(j)}) \equiv 1$ $(j = \overline{1, n-1})$ in [12].

Definition 1. Solution y of the equation (1) will be called $P_{\omega}(Y_0, \ldots, Y_{n-1}, \lambda_0)$ - solution, where $-\infty \leq \lambda_0 \leq +\infty$, if it is defined on an interval $[t_0, \omega] \subset [a, \omega]$ and satisfies the following conditions

$$y^{(j)}(t) \in \Delta_{Y_j} \quad at \quad t \in [t_0, \omega[, \quad \lim_{t \uparrow \omega} y^{(j)}(t) = Y_j \quad (j = \overline{0, n-1}), \quad \lim_{t \uparrow \omega} \frac{\left[y^{(n-1)}(t)\right]^2}{y^{(n)}(t)y^{(n-2)}(t)} = \lambda_0.$$

Our purpose is to determine the conditions for existence of $P_{\omega}(Y_0, \ldots, Y_{n-1}, \lambda_0)$ - solution of the equation (1) at all possible values of λ_0 and asymptotic representations as $t \uparrow \omega$ for such solutions and their derivatives up to and including n-1 order.

Assume that numbers ν_j $(j = \overline{0, n-1})$, determined by

$$\nu_j = \begin{cases} 1, & \text{if either } Y_j = +\infty, & \text{or } Y_j = 0 & \text{and } \Delta_{Y_j} & \text{is right neighborhood of } 0, \\ -1, & \text{if either } Y_j = -\infty, & \text{or } Y_j = 0 & \text{and } \Delta_{Y_j} & \text{is left neighborhood of } 0, \end{cases}$$

are like

$$\nu_j \nu_{j+1} > 0$$
 with $Y_j = \pm \infty$ and $\nu_j \nu_{j+1} < 0$ with $Y_j = 0$ $(j = \overline{0, n-2}).$ (2)

Such conditions for ν_j $(j = \overline{0, n-1})$ are necessary for solutions of (1), which are determined in left neighborhood of ω and which satisfy first two conditions of the definition 1.

Let's reduce two of the theorems established for the equation (1), concerning $P_{\omega}(Y_0, \ldots, Y_{n-1}, \lambda_0)$ - solutions in a case, when $\lambda_0 \in \mathbb{R} \setminus \left\{0, \frac{1}{2}, \frac{2}{3}, \ldots, \frac{n-2}{n-1}, 1\right\}$.

Let's define

$$a_{0i} = (n-i)\lambda_0 - (n-i-1) \quad (i = 1, \dots, n),$$

$$\gamma_0 = 1 - \sum_{j=0}^{n-1} \sigma_j, \quad \mu_n = \sum_{j=0}^{n-2} \sigma_j (n-j-1), \quad C = \prod_{j=0}^{n-2} \left| \frac{(\lambda_0 - 1)^{n-j-1}}{\prod_{i=j+1}^{n-1} a_{0i}} \right|^{\sigma_j}$$

$$\pi_\omega(t) = \begin{cases} t, & \text{if } \omega = +\infty, \\ t - \omega, & \text{if } \omega < +\infty, \end{cases} \quad J_n(t) = \int_{A_n}^t p(\tau) |\pi_\omega(\tau)|^{\mu_n} d\tau,$$

where limit of integration A_n is either a, or ω and is chosen so that the integral tends either to $\pm \infty$ or to zero as $t \uparrow \omega$.

Theorem 1. Let $\lambda_0 \in \mathbb{R} \setminus \left\{ 0, \frac{1}{2}, \dots, \frac{n-2}{n-1}, 1 \right\}$ and $\gamma_0 \neq 0$. Then for existence of $P_{\omega}(Y_0, \dots, Y_{n-1}, \lambda_0)$ -solutions of equation (1) it is necessary and if algebraic equation

$$\sum_{j=0}^{n-1} \sigma_j \prod_{i=j+1}^{n-1} a_{0\,i} \prod_{i=1}^j (a_{0\,i} + \rho) = (1+\rho) \prod_{i=1}^{n-1} (a_{0\,i} + \rho)$$
(3)

does not have roots with zero real part, is sufficiently that inequality (2), inequalities

$$\nu_{0j}\nu_{0j+1}a_{0j+1}(\lambda_0-1)\pi_{\omega}(t) > 0 \quad (j = \overline{0, n-2}), \quad \alpha_0\nu_{n-1}\gamma_0J_n(t) > 0 \quad at \quad t \in]a, \omega[0, 1]$$

and condition

$$\lim_{t\uparrow\omega}\frac{\pi_{\omega}(t)J'_{n}(t)}{J_{n}(t)} = \frac{\gamma_{0}}{\lambda_{0}-1}$$

are satisfied. Moreover, for each such solution at $t \uparrow \omega$, following asymptotic representations are valid

$$y^{(j)}(t) = \frac{[(\lambda_0 - 1)\pi_{\omega}(t)]^{n-j-1}}{\prod_{i=j+1}^{n-1} a_{0i}} y^{(n-1)}(t)[1+o(1)] \quad (j = 0, 1, \dots, n-2)$$
$$\frac{|y^{(n-1)}(t)|^{\gamma_s}}{\prod_{j=0}^{n-1} L_j \left(\frac{|(\lambda_0 - 1)\pi_{\omega}(t)]^{n-j-1}}{\prod_{i=j+1}^{n-1} a_{0i}} y^{(n-1)}(t)\right)} = \alpha_0 \nu_{n-1} \gamma_0 C J_n(t)[1+o(1)],$$

where $L_j(y^{(j)}) = |y^{(j)}|^{-\sigma_j} \varphi_{sj}(y^{(j)})$ $(j = \overline{0, n-1})$. Furthermore, there exists an m-parameter family of such solutions if, among the roots of equation (3), there are m roots (with regard of multiplicities) with the real part having the same sign as the function $(1 - \lambda_0)\pi_\omega(t)$.

Theorem 2. Let the conditions of theorem 1 be satisfied and the functions L_j $(j = \overline{0, n-1})$ satisfy Condition S_0 . Then each $P_{\omega}(Y_0, \ldots, Y_{n-1}, \lambda_0)$ - solution of differential equation (1) admits the following asymptotic representations as $t \uparrow \omega$

$$y^{(j)}(t) \sim \frac{\nu_{n-1}[(\lambda_0 - 1)\pi_{\omega}(t)]^{n-j-1}}{\prod\limits_{i=j+1}^{n-1} a_{0i}} \left| \gamma_0 C J_n(t) \prod\limits_{i=0}^{n-1} L_i \left(\nu_i |\pi_{\omega}(t)|^{\frac{a_{0i+1}}{\lambda_0 - 1}} \right) \right|^{\overline{\gamma_0}} \quad (j = \overline{0, n-1})$$

- 1. Seneta E. Regularly Varying Functions, Berlin: Springer-Verlag, 1976. Translated under the title Pravilno menyayushchiesya funktsii, Moscow: Nauka, 1985.
- Kiguradze I.T. and Chanturiya T.A. Asimptoticheskie svoistva reshenii neavtonomnykh obyknovennykh differentsialnykh uravnenii (Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations), Moscow, 1990.
- Kostin A.V. Asymptotics of the Regular Solutions of Nonlinear Ordinary Differential Equations// Differ. Uravn. - 1987. - Vol. 23, no. 3. - P. 524 -526.
- Evtukhov V.M. Asymptotic Properties of Monotone Solutions of a Class of Nonlinear Differential Equations of the nth-Order// Dokl. Rasshir. Zased. Sem. Inst. Prikl. Mat. – 1988. – V. 3, no. 3. – P. 62–65.
- 5. Evtukhov V.M. Asymptotic Representations of Monotone Solutions of an nth-Order Nonlinear Differential Equation of Emden–Fowler Type// Dokl. Akad. Nauk Russian. 1992. V. 234, no. 2. P. 258–260.
- Evtukhov V.M. A Class of Monotone Solutions of an nth-Order Nonlinear Differential Equation of Emden –Fowler Type// Soobshch. Akad. Nauk Gruzii. – 1992. – V. 145, no. 2. – P. 269–273.
- 7. Wong P.K. Existence and Asymptotic Behavior of Proper Solutions of a Class of Second-Order Nonlinear Differential Equations// Pacific J. Math. 1963. V. 13. P. 737–760.
- 8. Talliaferro S.D. Asymptotic Behavior of the Solutions of the Equation $y'' = \Phi(t)f(y) //$ SIAM J. Math.Anal. 1981. V. 12, no. 6. P. 47–59.
- 9. Mari \acute{c} V. Regular Variation and Differential Equations. Lecture Notes in Mathematics 1726. Springer-Verlag, Berlin Heidelberg. 2000. 128p.
- Evtukhov V.M. and Kirillova L.A. On the Asymptotic Behavior of Solutions of Nonlinear Differential Equations// Differ. Uravn. – 2005. – V. 41, no. 8. – P. 1105–1114.
- Evtukhov V.M. and Belozerova M.A. Asymptotic Representations of Solutions of Essentially Nonlinear Nonautonomous Differential Equations of the Second Order// Ukrain. Mat. Zh. – 2008. – V. 60, no. 3. – P. 310–331.
- Evtukhov V.M. and Samoilenko A.M. Asymptotic representation of the solutions of nonautonomous ordinary differential equations with regularly varying nonlinearities// Differ. Uravn. - 2011. - V. 47, № 5 - P. 628–650.