On special solutions to Emden-Fowler type differential equations ${ }^{1}$.

I. Astashova
Lomonosov Moscow State University, Moscow State University of Economics, Statistics and Informatics ast@diffiety.ac.ru

1 Introduction

For the higher-order Emden-Fowler type differential equation

$$
\begin{equation*}
y^{(n)}+p_{0}|y|^{k} \operatorname{sgn} y=0, \quad n>2, \quad k \in \mathbb{R}, \quad k>1, \quad p_{0} \neq 0, \tag{1}
\end{equation*}
$$

the existence of oscillatory and non-oscillatory solutions with special asymptotic behavior is proved. This yields the existence of solutions with arbitrary number of zeros.

A lot of results on the asymptotic behavior of solutions to (1) are described in detail in [1]. Results on the existence of solutions with special asymptotic behavior are contained in [2]-[9].

Hereafter we use the notation

$$
\begin{equation*}
\alpha=\frac{n}{k-1} . \tag{2}
\end{equation*}
$$

2 Existence of positive solutions with special asymptotic behavior

For equation (1) with $p_{0}=-1$ it was proved [4] that for any N and $K>1$ there exist an integer $n>N$ and $k \in \mathbf{R}$ such that $1<k<K$ and equation (1) has a solution of the form

$$
y=\left(x^{*}-x\right)^{-\alpha} h\left(\log \left(x^{*}-x\right)\right),
$$

where α is defined by (2) and h is a positive periodic non-constant function on \mathbf{R}.
A similar result was also proved [4] about Kneser solutions, i. e. those satisfying $y(x) \rightarrow 0$ as $x \rightarrow \infty$ and $(-1)^{j} y^{(j)}(x)>0$ for $0 \leq j<n$. Namely, if $p_{0}=(-1)^{n-1}$, then for any N and $K>1$ there exist an integer $n>N$ and $k \in \mathbf{R}$ such that $1<k<K$ and equation (1) has a solution of the form

$$
y(x)=\left(x-x_{*}\right)^{-\alpha} h\left(\log \left(x-x_{*}\right)\right),
$$

where h is a positive periodic non-constant function on \mathbf{R}.
Still it was not clear how large n should be for the existence of that type of positive solutions.
Theorem 1 ([8]) If $12 \leq n \leq 14$, then there exists $k>1$ such that equation (1) with $p_{0}=-1$ has a solution $y(x)$ such that

$$
y^{(j)}(x)=\left(x^{*}-x\right)^{-\alpha-j} h_{j}\left(\log \left(x^{*}-x\right)\right), \quad j=0,1, \ldots, n-1
$$

where α is defined by (2) and h_{j} are periodic positive non-constant functions on \mathbf{R}.
Remark 1 Computer calculations give approximate values of α providing the existence of the above-type solutions. They are, with the corresponding values of k, as follows:
if $n=12$, then $\alpha \approx 0.56, k \approx 22.4$;
if $n=13$, then $\alpha \approx 1.44, k \approx 10.0$;
if $n=14$, then $\alpha \approx 2.37, k \approx 6.9$.
Corollary 1.1 ([8]) If $12 \leq n \leq 14$, then there exists $k>1$ such that equation (1) with $(-1)^{n} p_{0}<0$ has a Kneser solution $y(x)$ satisfying

$$
y^{(j)}(x)=\left(x-x_{0}\right)^{-\alpha-j} h_{j}\left(\log \left(x-x_{0}\right)\right), \quad j=0,1, \ldots, n-1,
$$

with periodic positive non-constant functions h_{j} on \mathbf{R}.

[^0]
3 Existence of special oscillatory solutions

Theorem 2 For any integer $n>2$ and real $k>1$ there exists a non-constant oscillatory periodic function $h(s)$ such that for any $p_{0}>0$ and $x^{*} \in \mathbb{R}$ the function

$$
\begin{equation*}
y(x)=p_{0}^{\frac{1}{k-1}}\left(x^{*}-x\right)^{-\alpha} h\left(\log \left(x^{*}-x\right)\right), \quad-\infty<x<x^{*} \tag{3}
\end{equation*}
$$

is a solution to equation (1).
Corollary 2.1 For any integer even $n>2$ and real $k>1$ there exists a non-constant oscillatory periodic function $h(s)$ such that for any $p_{0}>0$ and $x^{*} \in \mathbb{R}$ the function

$$
\begin{equation*}
y(x)=p_{0}^{\frac{1}{k-1}}\left(x-x^{*}\right)^{-\alpha} h\left(\log \left(x-x^{*}\right)\right), \quad x^{*}<x<\infty \tag{4}
\end{equation*}
$$

is a solution to equation (1).
Corollary 2.2 For any integer odd $n>2$ and real $k>1$ there exists a non-constant oscillatory periodic function $h(s)$ such that for any $p_{0}<0$ and $x^{*} \in \mathbb{R}$ the function

$$
\begin{equation*}
y(x)=\left|p_{0}\right|^{\frac{1}{k-1}}\left(x-x^{*}\right)^{-\alpha} h\left(\log \left(x-x^{*}\right)\right), \quad x^{*}<x<\infty, \tag{5}
\end{equation*}
$$

is a solution to equation (1).

4 Existence of oscillatory solutions with prescribed number of zeros

(with V.Rogachev)

Theorem 3 For any integer $m \geq 2$ and even $n>2$, and any real $k>1, p_{0}>0,-\infty<a<b<+\infty$, equation (1) has a solution defined on the segment $[a, b]$, vanishing at its end points a and b, and having exactly m zeros on the segment $[a, b]$.

Theorem 4 For any integer $m \geq 2$ and odd $n>2$, and any real $k>1, p_{0} \neq 0,-\infty<a<b<+\infty$, equation (1) has a solution defined on the segment $[a, b]$, vanishing at its end points a and b, and having exactly m zeros on the segment $[a, b]$.

Theorem 5 For any integer $n>2$ and real $k>1, p_{0}>0,-\infty<a<b<+\infty$, equation (1) has a solution defined on the half-open interval $[a, b)$, vanishing at its end point a and having a countable number of zeros on the interval $[a, b)$.

Theorem 6 For any integer odd $n>2$ and real $k>1, p_{0}<0,-\infty<a<b<+\infty$, equation (1) has a solution defined on the half-open interval (a, b], vanishing at its end point b and having a countable number of zeros on the interval $(a, b]$.

Remark 2 The same results for $n=3,4$ were published in [9].

References

[1] Kiguradze I. T., Chanturia T. A. Asymptotic Properties of Solutions of Nonautonomous Ordinary Differenyial Equations. Kluver Academic Publishers, Dordreht-Boston-London. 1993.
[2] Kiguradze I. T. An oscillation criterion for a class of ordinary differential equations. Differ. Equations 28 (1992), No. 2, 180-190.
[3] I. T. Kiguradze., T. Kusano. On periodic solutions of even-order ordinary differential equations // Ann. Mat. Pura Appl., 180 (2001), No 3, pp. 285-301.
[4] Kozlov V. A. On Kneser solutions of higher order nonlinear ordinary differential equations. Ark. Mat., 37 (1999) No 2, pp. 305-322.
[5] T. Kusano, J. Manojlovic Asymptotic behavior of positive solutions of odd order Emden-Fowler type differential equations in the framework of regular variation // Electronic Journal of Qualitative Theory of Differential Equations, No. 45 (2012), pp.1-23.
[6] Astashova I. V. Application of Dynamical Systems to the Study of Asymptotic Properties of Solutions to Nonlinear Higher-Order Differential Equations // Journal of Mathematical Sciences. Springer Science+Business Media. 126 (2005), no. 5, pp.1361-1391.
[7] Astashova I. V. Qualitative properties of solutions to quasilinear ordinary differential equations. In: Astashova I. V. (ed.) Qualitative Properties of Solutions to Differential Equations and Related Topics of Spectral Analysis: scientific edition, M.: UNITY-DANA, 2012, pp. 22-290. (Russian)
[8] Astashova I.V. On power and non-power asymptotic behavior of positive solutions to Emden-Fowler type higher-order equations. Advances in Difference Equations.2013, DOI: 10.1186/10.1186/1687-1847-2013-220
[9] Astashova I.V., Rogachev V.V. On existence of solutions with prescribed number of zeros to Emden-Fowler type differential equations of the third and the forth orders // Diff. equations, 49 (11), 2013, pp.1509-1510.

[^0]: ${ }^{1}$ The work was partially supported by the Russian Foundation for Basic Researches (Grant 11-01-00989).

