Czech-Georgian Workshop on Boundary Value Problems

Institute of Mathematics, Academy of Sciences of the Czech Republic
5-9 December, 2011, Branch in Brno

Limit properties of positive solutions of fractional boundary value problems

Svatoslav Staněk
Department of Mathematics, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
e-mail: svatoslav.stanek@upol.cz

Let \mathcal{A} denote the set of linear functionals $\Phi: C[0,1] \rightarrow \mathbb{R}$ which are nondecreasing (i.e., $x, y \in C[0,1], x \leq y$ on $[0,1] \Rightarrow \Phi(x) \leq \Phi(y))$. Let $\mathcal{B}=\{\Phi \in \mathcal{A}: \Phi(1)<1\}$.

The Caputo fractional derivative ${ }^{c} D^{\gamma} x$ of order $\gamma>0, \gamma \notin \mathbb{N}$, of a function $x:[0,1] \rightarrow \mathbb{R}$ is defined as

$$
{ }^{c} D^{\gamma} x(t)=\frac{1}{\Gamma(n-\gamma)} \frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}} \int_{0}^{t}(t-s)^{n-\gamma-1}\left(x(s)-\sum_{k=0}^{n-1} \frac{x^{(k)}(0)}{k!} s^{k}\right) \mathrm{d} s
$$

where $n=[\gamma]+1$ and $[\gamma]$ means the integral part of γ and where Γ is the Euler gamma function.

We investigate the sequence of fractional boundary value problems

$$
\begin{gather*}
{ }^{c} D^{\alpha_{n}} u(t)=\sum_{k=1}^{m} a_{k}(t)^{c} D^{\mu_{k, n}} u(t)+f\left(t, u(t), u^{\prime}(t),{ }^{c} D^{\beta_{n}} u(t)\right), \quad n \in \mathbb{N}, \tag{1}\\
u^{\prime}(0)=0, u(1)=\Phi(u)-\Lambda\left(u^{\prime}\right), \quad \Lambda \in \mathcal{A}, \Phi \in \mathcal{B}, \tag{2}
\end{gather*}
$$

where $\alpha_{n} \in(1,2), \beta_{n}, \mu_{k, n} \in(0,1), \lim _{n \rightarrow \infty} \alpha_{n}=2, \lim _{n \rightarrow \infty} \beta_{n}=1, \lim _{n \rightarrow \infty} \mu_{k, n}=1, a_{k} \in C[0,1]$ $(k=1,2, \ldots, m)$ and $f \in C([0,1] \times \mathcal{D}), \mathcal{D} \subset \mathbb{R}^{3}$.

A function $u:[0,1] \rightarrow \mathbb{R}$ is called a positive solution of problem (1), (2) if $u \in C^{1}[0,1]$ (and then $\left.{ }^{c} D^{\mu_{k, n}} u,{ }^{c} D^{\beta_{n}} u \in C[0,1]\right)$, ${ }^{c} D^{\alpha_{n}} u \in C[0,1], u>0$ on [0, 1), u satisfies (2) and equality (1) holds for $t \in[0,1]$.

Together with (1) the differential equation

$$
\begin{equation*}
u^{\prime \prime}(t)=u^{\prime}(t) \sum_{k=1}^{m} a_{k}(t)+f\left(t, u(t), u^{\prime}(t), u^{\prime}(t)\right) \tag{3}
\end{equation*}
$$

is investigated. A function $u \in C^{2}[0,1]$ is called a positive solution of problem (3), (2) if $u>0$ on $[0,1), u$ satisfies (2) and (3) holds for $t \in[0,1]$.

We investigate the relation between positive solutions of problems (1), (2) and (3), (2). It is proved that

- for each $n \in \mathbb{N}$, problem (1), (2) has a positive solution u_{n},
- there exists a subsequence $\left\{u_{n^{\prime}}\right\}$ of $\left\{u_{n}\right\}$ that converges to a positive solution u of problem (3), (2) (i.e., $\left\|u_{n^{\prime}}-u\right\|_{C^{1}} \rightarrow 0,\left\|^{c} D^{\alpha_{n^{\prime}}} u_{n^{\prime}}-u^{\prime \prime}\right\| \rightarrow 0,\left\|^{c} D^{\mu_{k, n^{\prime}}} u_{n^{\prime}}-u^{\prime}\right\| \rightarrow 0$ and $\left\|{ }^{c} D^{\beta_{n^{\prime}}} u_{n^{\prime}}-u^{\prime}\right\| \rightarrow 0$ as $\left.n^{\prime} \rightarrow \infty\right)$.

The existence result for problem (1), (2) is proved by the Leray-Schauder degree theory.

