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Let M be a phase space of a certain evolution process. Let x(t) denotes a point that de-
scribes the state of the process at the time t. A point x(t) may be interpreted, for a fixed value
of t, as an n-dimensional vector of the Euclidean space Rn and M may be considered as a sub-
set of Rn. The topological product of the phase space M and the real axis R will be called the
extended phase space of the considered evolution process. Let the evolution of the process
be described by:

a) the system of differential equations

dx

dt
= f(t, x), x ∈M, t ∈ R; (1)

b) a certain set Tt given in the extended phase space;

c) an operator At defined on the set Tt which is mapped into the set T ′
t = AtTt in the

extended phase space.

The set of conditions a)–c) that characterize the evolution process will be called an impul-
sive differential system. We will call the curve described by the point {t, x(t)} in the extended
phase space an integral curve and the function x = x(t) that gives hat curve a solution of this
system.

In the theory of impulsive systems, there are some problems similar to the ones considered
in the theory of the ordinary differential equations but there are also problems that are specific
to the theory of impulsive systems. These problems depend greatly on the properties of the
operatorAt. For example, if the operatorAt is not a single-valued, then there are the problems
related to a study of trajectories, for which the moving point can “instantaneously” split into
several points when it meets the set Tt.

The talk is organized in the following way. In Section 1, we give a general description
of the mathematical model and classification of impulsive differential system depending on
the characteristics of the impulses. In Section 2, we consider a linear impulsive system and
the basic properties and stability of solutions. A special attention are payed to the periodic
impulsive systems.



A linear differential impulsive system

dx

dt
= A(t)x, t 6= τi, ∆x|t=τi = Bix (2)

is called T -periodic if the matrix A(t) is T -periodic and there is a natural number p such that

Bi+p = Bi, τi+p = τi + T (3)

for all i ∈ Z. Assume that matrix A(t) is continuous (piecewise continuous with the first kind
discontinuities at t = τi), the matrices E +Bi are nonsingular, and the times τi are indexed by
integers such that 0 < τ1 < . . . < τp < T .

Theorem 1. Linear periodic impulsive differential system (2) can be reduced to a system with con-
stant coefficients by a linear nonsingular piecewise continuous periodic Lyapunov transformation of
variables.

In Section 3, we consider a system of differential equations, defined in the direct product of
anm-dimensional torus Tm and an n-dimensional Euclidean space Rn that undergo impulsive
perturbations at the moments when the phase point ϕ meets a given set in the phase space

dϕ

dt
= a(ϕ),

dx

dt
= A(ϕ)x+ f(ϕ), ϕ 6∈ Γ,

∆x|ϕ∈Γ = B(ϕ)x+g(ϕ),

(4)

where ϕ = (ϕ1, . . . , ϕm)T ∈ Tm, x = (x1, . . . , xn)T ∈ Rn, a(ϕ) is a continuous 2π-periodic with
respect to each of the components ϕv, v = 1, . . . ,m vector function that satisfies a Lipschitz
condition with respect to ϕ. Functions A(ϕ), B(ϕ) are continuous 2π-periodic with respect to
each of the components ϕv, v = 1, . . . ,m square matrices; f(ϕ), g(ϕ) are continuous (piecewise
continuous with first kind discontinuities in the set Γ) 2π-periodic with respect to each of the
components ϕv, v = 1, . . . ,m vector functions.

We assume that the set Γ is a subset of the torus Tm, which is a manifold of dimension
m− 1 defined by the equation Φ(ϕ) = 0 for some continuous scalar 2π-periodic with respect
to each of the components ϕv, v = 1, . . . ,m function.

Denote by ϕt(ϕ) the solution of the first equation of system (4) that satisfies the initial
condition ϕ0(ϕ) = ϕ. Let ti(ϕ), i ∈ Z are the solutions of the equation Φ(ϕt(ϕ)) = 0 that
are the moments of impulsive action in system (4). Let the function Φ(ϕ) be such that the
solutions t = ti(ϕ) exist since otherwise system (4) would not be an impulsive system.

We call a point ϕ∗ an ω-limit point of the trajectory ϕt(ϕ) if there exists a sequence {tn}n∈N
in R so that

lim
n→+∞

tn = +∞, lim
n→+∞

ϕtn(ϕ) = ϕ∗.

The set of all ω-limit points for a given trajectory ϕt(ϕ) is called ω-limit set of the trajectory
ϕt(ϕ) and denoted by Ωϕ. Denote by

Ω =
⋃
ϕ∈Tm

Ωϕ



and assume that the matrices A(ϕ) and B(ϕ) are constant in the domain Ω:

A(ϕ)|ϕ∈Ω = Ã, B(ϕ)|ϕ∈Ω = B̃.

We have obtained sufficient conditions for the existence of the asymptotically stable invariant
set of the system (4) in terms of the eigenvalues of the matrices Ã and B̃. Denote by

γ = max
j=1,...,n

Reλj(Ã), α2 = max
j=1,...,n

λj((E + B̃)T (E + B̃)).

Theorem 2. Let the moments of impulsive perturbations {ti(ϕ)} be such that uniformly with respect
to t ∈ R there exists a finite limit

lim
T̃→∞

i(t, t+ T̃ )

T̃
= p. (5)

If the following inequality holds
γ + p lnα < 0, (6)

then system (4) has an asymptotically stable invariant set.
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