On the well-posedness of two-point weighted boundary value problems for second order nonlinear differential equations with strong singularities

Nino Partsvania
A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
e-mail: ninopa@rmi.ge

Let $-\infty<a<b<+\infty$ and $f:] a, b[\times \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Consider the second order nonlinear differential equation

$$
\begin{equation*}
u^{\prime \prime}=f(t, u) \tag{1}
\end{equation*}
$$

with weighted boundary conditions of one of the following two types:

$$
\begin{equation*}
\limsup _{t \rightarrow a} \frac{|u(t)|}{(t-a)^{\alpha}}<+\infty, \quad \limsup _{t \rightarrow b} \frac{|u(t)|}{(b-t)^{\beta}}<+\infty \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{t \rightarrow a} \frac{|u(t)|}{(t-a)^{\alpha}}<+\infty, \quad \lim _{t \rightarrow b} u^{\prime}(t)=0 \tag{3}
\end{equation*}
$$

where $\alpha \in] 0,1[$ and $\beta \in] 0,1[$.
Below we give the results from [4] which contain unimprovable in a certain sense conditions guaranteeing the well-posedness of the problems (1), (2) and (1), (3). These results cover the case, where Eq. (1) at the points a and b has strong singularities in the sense of R. P. Agarwal and I. Kiguradze [1, 2, 3], i.e. the case, where for any $\left.t_{0} \in\right] a, b[$ and $x>0$ the condition $\int_{a}^{t_{0}}(t-a)[|f(t, x)|-f(t, x) \operatorname{sgn} x] d t=+\infty$ or the condition $\int_{t_{0}}^{b}(b-t)[|f(t, x)|-f(t, x) \operatorname{sgn} x] d t=$ $+\infty$ is satisfied.

Let

$$
G_{0}(t, s)=\left\{\begin{array}{ll}
\frac{(s-a)(t-b)}{b-a} & \text { for } a \leq s \leq t \leq b, \\
\frac{(t-a)(s-b)}{b-a} & \text { for } a \leq t<s \leq b
\end{array} \quad G_{1}(t, s)= \begin{cases}a-s & \text { for } a \leq s \leq t \leq b \\
a-t & \text { for } a \leq t<s \leq b\end{cases}\right.
$$

For any continuous function $h:] a, b[\rightarrow \mathbb{R}$, we assume

$$
\begin{gathered}
\nu_{\alpha, \beta}(h)=\sup \left\{(t-a)^{-\alpha}(b-t)^{-\beta} \int_{a}^{b}\left|G_{0}(t, s) h(s)\right| d s: a<t<b\right\}, \\
\nu_{\alpha}(h)=\sup \left\{(t-a)^{-\alpha} \int_{a}^{b}\left|G_{1}(t, s) h(s)\right| d s: a<t<b\right\}
\end{gathered}
$$

Definition 1. The problem (1), (2) (the problem (1), (3)) is said to be well-posed if for any continuous function $h:] a, b\left[\rightarrow \mathbb{R}\right.$, satisfying the condition $\nu_{\alpha, \beta}(h)<+\infty\left(\nu_{\alpha}(h)<+\infty\right)$, the perturbed differential equation

$$
\begin{equation*}
v^{\prime \prime}=f(t, v)+h(t) \tag{4}
\end{equation*}
$$

has a unique solution, satisfying the boundary conditions (2) (the boundary conditions (3)), and there exists a positive constant r, independent of the function h, such that in the interval $] a, b[$ the inequality

$$
|u(t)-v(t)| \leq r \nu_{\alpha, \beta}(h)(t-a)^{\alpha}(b-t)^{\beta} \quad\left(|u(t)-v(t)| \leq r \nu_{\alpha}(h)(t-a)^{\alpha}\right)
$$

is satisfied, where u and v are the solutions of (1), (2) and (4), (2) (of (1), (3) and (4), (3)), respectively.

Theorem 1. Let there exist a continuous function $p:] a, b[\rightarrow[0,+\infty[$ such that

$$
f(t, x)-f(t, y) \geq-(t-a)^{-\alpha}(b-t)^{-\beta} p(t)(x-y) \quad \text { for } a<t<b, x>y
$$

If, moreover, $\nu_{\alpha, \beta}(p)<1, \nu_{\alpha, \beta}(f(\cdot, 0))<+\infty$, then the problem (1), (2) is well-posed.
Theorem 2. Let there exist a continuous function $p:] a, b[\rightarrow[0,+\infty[$ such that

$$
f(t, x)-f(t, y) \geq-(t-a)^{-\alpha} p(t)(x-y) \quad \text { for } a<t<b, x>y
$$

If, moreover, $\nu_{\alpha}(p)<1, \nu_{\alpha}(f(\cdot, 0))<+\infty$, and $\int_{t}^{b} f^{*}(s, x) d s<+\infty$ for $a<t<b, x>0$, where $f^{*}(t, x)=\max \{|f(t, y)|:|y| \leq x\}$, then the problem (1), (3) is well-posed.

The condition $\nu_{\alpha, \beta}(p)<1$ (the condition $\nu_{\alpha}(p)<1$) in Theorem 1 (in Theorem 2) is unimprovable and it cannot be replaced by the condition $\nu_{\alpha, \beta}(p) \leq 1\left(\right.$ by the condition $\left.\nu_{\alpha}(p) \leq 1\right)$.

Acknowledgement

Supported by the Shota Rustaveli National Science Foundation (Project \# GNSF/ST09_175_3101).

References

[1] R. P. Agarwal and I. Kiguradze, Two-point boundary value problems for higher-order linear differential equations with strong singularities. Boundary Value Problems 2006 (2006), 1-32; Article ID 83910.
[2] I. Kiguradze, On two-point boundary value problems for higher order singular ordinary differential equations. Mem. Differential Equations Math. Phys. 31 (2004), 101-107.
[3] I. Kiguradze, Positive solutions of two-point boundary value problems for higher order nonlinear singular differential equations. Bull. Georg. Natl. Acad. Sci. (2011), (to appear).
[4] N. Partsvania, On solvability and well-posedness of two-point weighted singular boundary value problems. Mem. Differential Equations Math. Phys. 54 (2011), 139-146.

