
Czech-Georgian Workshop on Boundary Value Problems
Institute of Mathematics, Academy of Sciences of the Czech Republic
5–9 December, 2011, Branch in Brno

IN
ST
IT
U
TE

of
M
ATH

EMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
lic

Positive solutions of two-point boundary value problems for
nonlinear differential equations with strong singularities

Ivan Kiguradze

A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University,
Tbilisi, Georgia

e-mail: kig@rmi.ge

Let −∞ < a < b < +∞, m be an arbitrary natural number, and f : ]a, b[× ]0,+∞[→ R
be a continuous function. In the open interval ]a, b[ , we consider the nonlinear differential
equation

u(2m) = f(t, u) (1)

with the boundary conditions of one of the following two types:

lim
t→a

u(i−1)(t) = 0, lim
t→b

u(i−1)(t) = 0 (i = 1, . . . ,m); (2)

lim
t→a

u(i−1)(t) = 0, lim
t→b

u(m+i−1)(t) = 0 (i = 1, . . . ,m). (3)

By C2m,m(]a, b[) we denote the space of 2m-times continuously differentiable functions
u : ]a, b[→ R, satisfying the condition

∫ b
a
|u(m)(t)|2 dt < +∞.

Theorem 1. Let in the domain ]a, b[× ]0,+∞[ the inequality

0 ≤ (−1)mf(t, x)− h(t)xµ ≤ `
(
(t− a)−2m + (b− t)−2m

)
x+ q(t, x)

be satisfied, where µ ∈ [0, 1[ and ` ≥ 0 are constants, h : ]a, b[→ [0,+∞[ is a continuous func-
tion, and q : ]a, b[× ]0,+∞[→ [0,+∞[ is a continuous and nonincreasing in the second argument
function. If, moreover,

` < 4−m
[
(2m− 1)!!

]2
, (4)

h(t) 6≡ 0,

∫ b

a

[
(t− a)(b− t)

](1+µ)(m− 1
2
)
h(t) dt < +∞,∫ b

a

[
(t− a)(b− t)

]m− 1
2 q
(
t, (t− a)m(b− t)mx

)
dt < +∞ for x > 0,

then problem (1), (2) in the space C2m,m(]a, b[) has at least one positive solution.



Unlike the previous well-known results the Theorem 1 cover the case where equation (1),
along with strong singularities with respect to the time variable at the points a and b, has
strong singularity with respect to the phase variable, as well, i.e. the case where∫ t0

a

(t− a)2m−1|f(t, x)| dt =
∫ b

t0

(t− a)2m−1|f(t, x)| dt = +∞ for a < t0 < b, x > 0,

lim sup
x→0

(
xk|f(t, x)|

)
= +∞ for arbitrary t ∈ ]a, b[ and k > 0.

Theorem 2. If

(−1)m
[
f(t, x)− f(t, y)

]
≤ `
(
(t− a)−2m + (b− t)−2m

)
(x− y) for a < t < b, x > y > 0,

where ` is a nonnegative constant, satisfying (4), then problem (1), (2) in the space C2m,m(]a, b[) has
at most one positive solution.

As an example let us consider the differential equation

u(2m) = (−1)m
[
p0(t)u+ p1(t)u

µ + p2(t)u
−ν], (5)

where µ ∈ [0, 1[, ν ≥ 0 and pi : ]a, b[→ [0,+∞[ (i = 0, 1, 2) are continuous functions such that
either p1(t) 6≡ 0, or p0(t)p2(t) 6≡ 0. From Theorems 1 and 2 follow the following corollaries.

Corollary 1. Let
p0(t) ≤ `

(
(t− a)−2m + (b− t)−2m

)
for a < t < b,

where ` is a nonnegative constant satisfying inequality (4). If, moreover,∫ b

a

[
(t− a)(b− t)

](1+µ)(m− 1
2
)
p1(t) dt < +∞,∫ b

a

[
(t− a)(b− t)

](1−ν)m− 1
2p2(t) dt < +∞, (6)

then problem (5), (2) in the space C2m,m(]a, b[) has at least one positive solution.

Corollary 2. Let

p0(t) + µp1(t) ≤ `
(
(t− a)−2m + (b− t)−2m

)
for a < t < b,

µp1(t) ≤ νp2(t) for a < t < b,

where ` is a nonnegative constant satisfying inequality (4). If, moreover, the condition (6) holds, then
problem (5), (2) in the space C2m,m(]a, b[) has one and only one positive solution.

The results analogous to theorems and corollaries formulated above are established for
problems (1), (3) and (5), (3) as well.
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