Positive solutions of two-point boundary value problems for nonlinear differential equations with strong singularities

Ivan Kiguradze
A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
e-mail: kig@rmi.ge

Let $-\infty<a<b<+\infty, m$ be an arbitrary natural number, and $f:] a, b[\times] 0,+\infty[\rightarrow \mathbb{R}$ be a continuous function. In the open interval $] a, b[$, we consider the nonlinear differential equation

$$
\begin{equation*}
u^{(2 m)}=f(t, u) \tag{1}
\end{equation*}
$$

with the boundary conditions of one of the following two types:

$$
\begin{gather*}
\lim _{t \rightarrow a} u^{(i-1)}(t)=0, \quad \lim _{t \rightarrow b} u^{(i-1)}(t)=0 \quad(i=1, \ldots, m) \tag{2}\\
\lim _{t \rightarrow a} u^{(i-1)}(t)=0, \quad \lim _{t \rightarrow b} u^{(m+i-1)}(t)=0 \quad(i=1, \ldots, m) \tag{3}
\end{gather*}
$$

By $C^{2 m, m}(] a, b[)$ we denote the space of $2 m$-times continuously differentiable functions $u:] a, b\left[\rightarrow \mathbb{R}\right.$, satisfying the condition $\int_{a}^{b}\left|u^{(m)}(t)\right|^{2} d t<+\infty$.

Theorem 1. Let in the domain $] a, b[\times] 0,+\infty[$ the inequality

$$
0 \leq(-1)^{m} f(t, x)-h(t) x^{\mu} \leq \ell\left((t-a)^{-2 m}+(b-t)^{-2 m}\right) x+q(t, x)
$$

be satisfied, where $\mu \in[0,1[$ and $\ell \geq 0$ are constants, $h:] a, b[\rightarrow[0,+\infty[$ is a continuous function, and $q:] a, b[\times] 0,+\infty[\rightarrow[0,+\infty[$ is a continuous and nonincreasing in the second argument function. If, moreover,

$$
\begin{gather*}
\ell<4^{-m}[(2 m-1)!!]^{2}, \tag{4}\\
h(t) \not \equiv 0, \quad \int_{a}^{b}[(t-a)(b-t)]^{(1+\mu)\left(m-\frac{1}{2}\right)} h(t) d t<+\infty \\
\int_{a}^{b}[(t-a)(b-t)]^{m-\frac{1}{2}} q\left(t,(t-a)^{m}(b-t)^{m} x\right) d t<+\infty \quad \text { for } x>0
\end{gather*}
$$

then problem (1), (2) in the space $C^{2 m, m}(] a, b[)$ has at least one positive solution.

Unlike the previous well-known results the Theorem 1 cover the case where equation (1), along with strong singularities with respect to the time variable at the points a and b, has strong singularity with respect to the phase variable, as well, i.e. the case where

$$
\begin{gathered}
\int_{a}^{t_{0}}(t-a)^{2 m-1}|f(t, x)| d t=\int_{t_{0}}^{b}(t-a)^{2 m-1}|f(t, x)| d t=+\infty \quad \text { for } a<t_{0}<b, x>0 \\
\left.\limsup _{x \rightarrow 0}\left(x^{k}|f(t, x)|\right)=+\infty \quad \text { for arbitrary } t \in\right] a, b[\text { and } k>0
\end{gathered}
$$

Theorem 2. If

$$
(-1)^{m}[f(t, x)-f(t, y)] \leq \ell\left((t-a)^{-2 m}+(b-t)^{-2 m}\right)(x-y) \quad \text { for } a<t<b, x>y>0
$$

where ℓ is a nonnegative constant, satisfying (4), then problem (1), (2) in the space $C^{2 m, m}(] a, b[)$ has at most one positive solution.

As an example let us consider the differential equation

$$
\begin{equation*}
u^{(2 m)}=(-1)^{m}\left[p_{0}(t) u+p_{1}(t) u^{\mu}+p_{2}(t) u^{-\nu}\right] \tag{5}
\end{equation*}
$$

where $\mu \in\left[0,1\left[, \nu \geq 0\right.\right.$ and $\left.p_{i}:\right] a, b[\rightarrow[0,+\infty[(i=0,1,2)$ are continuous functions such that either $p_{1}(t) \not \equiv 0$, or $p_{0}(t) p_{2}(t) \not \equiv 0$. From Theorems 1 and 2 follow the following corollaries.

Corollary 1. Let

$$
p_{0}(t) \leq \ell\left((t-a)^{-2 m}+(b-t)^{-2 m}\right) \quad \text { for } a<t<b
$$

where ℓ is a nonnegative constant satisfying inequality (4). If, moreover,

$$
\begin{gather*}
\int_{a}^{b}[(t-a)(b-t)]^{(1+\mu)\left(m-\frac{1}{2}\right)} p_{1}(t) d t<+\infty \\
\int_{a}^{b}[(t-a)(b-t)]^{(1-\nu) m-\frac{1}{2}} p_{2}(t) d t<+\infty \tag{6}
\end{gather*}
$$

then problem (5), (2) in the space $C^{2 m, m}(] a, b[)$ has at least one positive solution.
Corollary 2. Let

$$
\begin{gathered}
p_{0}(t)+\mu p_{1}(t) \leq \ell\left((t-a)^{-2 m}+(b-t)^{-2 m}\right) \quad \text { for } a<t<b \\
\mu p_{1}(t) \leq \nu p_{2}(t) \quad \text { for } a<t<b
\end{gathered}
$$

where ℓ is a nonnegative constant satisfying inequality (4). If, moreover, the condition (6) holds, then problem (5), (2) in the space $C^{2 m, m}(] a, b[)$ has one and only one positive solution.

The results analogous to theorems and corollaries formulated above are established for problems (1), (3) and (5), (3) as well.

Acknowledgement

Supported by the Shota Rustaveli National Science Foundation (Project \# GNSF/ST09_175_3101).

