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Abstract

Sufficient and necessary conditions for existence of Kneser solutions vanishing at in-
finity of a nonlinear third-order differential equation with singular nonlinearity will be
discussed.

Introduction

Consider the differential equation

y(n) = p(x)|y|λ−1 y, 0 < λ < 1, x ≥ 0 (1)

with
(−1)(n)p(x) ≥ 0, x ≥ 0. (2)

Definition 1 ([1], [4]). A solution y(x) of (1) is called a Kneser solution vanishing at infinity if

(−1)(i)y(i)(x) > 0, (3)

|y(i−1)(x)| ↓ 0, x→∞, i = 1, 2, . . . , n. (4)

In [2] a sufficient condition was obtained for existence of solutions y(x) satisfying (3), (4):

Theorem 1. If a continuous function p(x) satisfies the condition∫ +∞

0

τn−1|p(τ)|dτ <∞ (5)

then (1) has solutions y(x) such that (3), (4) hold.

Later in [3] N. Izobov proved that (5) is not necessary if n = 2:
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Theorem 2 (N. Izobov). Let n = 2. For any µ ≥ 1
(n−1)λ+1

and any function ϕ(x) > 0 there exists
a piecewise continuous non-negative function p(x) satisfying the condition∫ +∞

0

pµ(τ)ϕ(τ)dτ =∞ (6)

such that equation (1) has a Kneser solution y(x) vanishing at infinity.

Corollary 1 (N. Izobov). Let n = 2. There exists a piecewise continuous non-negative function p(x)
satisfying the condition ∫ +∞

0

τn−1|p(τ)|dτ =∞ (7)

such that equation (1) has a solution y(x) with (3), (4).

Problem (N. Izobov): Is it possible to prove for n > 2 the analogue of Theorem 2?

A partial answer is given here for n = 3.

Main result

Theorem 3. Suppose n = 3 and 0 < λ < 1. Than for any µ > 1
2λ+1

and any continuous positive
function ϕ(x) x ≥ 0, there exists a smooth negative function p(x) such that the condition∫ +∞

0

|p(τ)|µϕ(τ)dτ =∞ (8)

holds and equation (1) has a solution satisfying conditions (3), (4).

In fact the following result is proved:

Theorem 4. Suppose n = 3,0 < λ < 1, ϕ(x) is a continuous positive function for x ≥ 0, µ > 1
2λ+1

.
Then there exists a C∞ function y(x), x ≥ 0, such that

|y(i)(x)| � 0, x→∞, i = 0, 1, 2, (9)

and ∫ +∞

0

|y′′′(ξ)|µ|y(ξ)|−µλϕ(ξ)dξ =∞. (10)

Remark 1. To generalize Theorem 2 the inequality µ ≥ 1
2λ+1

is needed. We prove Theorem 3
for µ > 1

2λ+1
only, so Izobov’s problem is partially solved. However we prove existence of

a smooth negative function p(x), which is a piecewise continuous non-positive function in
Theorem 2.

Remark 2. Asymptotic behavior of solutions of the third-order equation (1) is described in
[5, 6].
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