On the Cauchy-Nicoletti multipoint boundary value problem for systems of linear generalized differential equations with singularities

Malkhaz Ashordia
A. Razmadze Mathematical Institute, Sukhumi State University, Tbilisi, Georgia
e-mail: ashord@rmi.ge

For the system of linear generalized ordinary differential equations with singularities the two point boundary value problem

$$
\begin{gather*}
d x(t)=d A(t) \cdot x(t)+d f(t), \tag{1}\\
x_{i}\left(t_{i}-\right)=0, \quad x_{i}\left(t_{i}+\right)=0 \quad(i=1, \ldots, n), \tag{2}
\end{gather*}
$$

is considered, where x_{1}, \ldots, x_{n} are the components of the desired solution $x,-\infty<a<t_{i} \leq$ $t_{i+1}<b<+\infty, f=\left(f_{l}\right)_{l=1}^{n}:[a, b] \rightarrow \mathbb{R}^{n}$ is a vector-function the components of which have bounded variations, $A=\left(a_{i l}\right)_{i, l=1}^{n}:[a, b] \rightarrow \mathbb{R}^{n \times n}$ is a matrix-function such that the functions $a_{i l}(i \neq l ; i, l=1, \ldots, n)$ have bounded variations on $[a, b]$, and the function $a_{i i}$ have bounded variation on every closed interval from $[a, b]$ which do not include the point t_{i} for every $i \in$ $\{1, \ldots, n\}$.

The sufficient conditions are established for this problem to be uniquely solvable in the case when system (1) is singular, i. e., the components of the matrix-function A maybe to have unbounded variation on $[a, b]$.

Generalized ordinary differential equations have been introduced by J. Kurzweil in connection with the investigation of the question of the correctness of the Cauchy problem for ordinary differential equations [J. Kurzweil, Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslovak Math. J. 7 (1957), No. 3, 418-449].

The theory of generalized ordinary differential equations enables one to investigate ordinary differential, impulsive and difference equations from a unified point of view.
$\mathrm{BV}_{\text {loc }}\left(a, b, t_{i} ; \mathbb{R}^{n}\right)$ is the set of all functions $\varphi:[a, b] \backslash\left\{t_{i}\right\} \rightarrow \mathbb{R}$ having bounded variation on every closed interval $[s, d] \subset[a, b] \backslash\left\{t_{i}\right\}(i=1, \ldots, n)$.

Under a solution of problem (1), (2) we mean a vector-function $x=\left(x_{i}\right)_{i}^{n}$ with $x_{i} \in$ $\mathrm{BV}_{\text {loc }}\left(a, b, t_{i} ; \mathbb{R}\right)(i=1, \ldots, n)$, satisfying condition (2) and system (1), i. e., such that
$x_{i}(t)=x_{i}(s)+\sum_{l=1}^{n} \int_{s}^{t} x_{l}(\tau) d a_{i l}(\tau)+f_{i}(t)-f_{i}(s)$ for every $[s, t] \subset[a, b], t_{i} \notin[s, t](i=1, \ldots, n)$,
where the integral is considered in the Lebesgue-Stieltjes sense.
Let $\operatorname{det}\left(I_{n}+(-1)^{j} d_{j} A(t)\right) \neq 0$ for $t \in[a, b](j=1,2)$, where I_{n} is the identity $n \times n$-matrix.

By $\gamma_{\alpha}(\cdot, s)$ we denote the unique solution of the Cauchy problem

$$
d \gamma(t)=\gamma(t) d \alpha(t), \quad \gamma(s)=1
$$

Definition 1. We say that a matrix-function $C=\left(c_{i l}\right)_{i, l=1}^{n} \in \mathrm{BV}\left([a, b], \mathbb{R}^{n \times n}\right)$ belongs to the set $\mathcal{U}\left(a, b, t_{1}, \ldots, t_{n}\right)$ if the functions $c_{i l}(i \neq l ; i, l=1, \ldots, n)$ are nondecreasing on $[a, b]$ and the system

$$
\operatorname{sgn}\left(t-t_{i}\right) \cdot d x_{i}(t) \leq \sum_{l=1}^{n} x_{l}(t) d c_{i l}(t) \quad \text { for } t \in[a, b](i=1, \ldots, n)
$$

has no nontrivial, nonnegative solution satisfying condition (2).
Theorem 1. Let the vector-function f have bounded variation and let the matrix-function $A=$ $\left(a_{i l}\right)_{i, l=1}^{n}$ be such that the inequalities

$$
\begin{gathered}
\left(s_{0}\left(a_{i i}\right)(t)-s_{0}\left(a_{i i}\right)(s)\right) \operatorname{sgn}\left(t-t_{i}\right) \leq s_{0}\left(c_{i i}-\alpha_{i}\right)(t)-s_{0}\left(c_{i i}-\alpha_{i}\right)(s) \\
(-1)^{j}\left(\left|1+(-1)^{j} d_{j} a_{i i}(t)\right|-1\right) \operatorname{sgn}\left(t-t_{i}\right) \leq d_{j}\left(c_{i i}(t)-\alpha_{i}(t)\right)(j=1,2), \\
\left|s_{0}\left(a_{i l}\right)(t)-s_{0}\left(a_{i l}\right)(s)\right| \leq s_{0}\left(c_{i l}\right)(t)-s_{0}\left(c_{i l}\right)(s), \\
\left|d_{j} a_{i l}(t)\right| \leq d_{j} c_{i l}(t)(j=1,2)
\end{gathered}
$$

hold for $a \leq s<t<t_{i}$ or $t_{i}<s<t \leq b(i \neq l ; i, l=1, \ldots, n)$, where $C=\left(c_{i l}\right)_{i, l=1}^{n} \in$ $\mathcal{U}\left(a, b, t_{1}, \ldots, t_{n}\right)$, and $\alpha_{i}:[a, b] \rightarrow \mathbb{R}(i=1, \ldots, n)$ are nondecreasing on intervals $\left[a, t_{i}[\right.$ and $\left.] t_{i}, b\right]$ functions such that

$$
\begin{gather*}
\lim _{t \rightarrow t_{i}+} d_{1} \alpha_{i}(t)<1 \quad(i=1, \ldots, n), \lim _{t \rightarrow t_{i}-} d_{2} \alpha_{i}(t)<1 \quad(i=1, \ldots, n), \tag{3}\\
\lim _{t \rightarrow t_{i}+} \sup \left\{\gamma_{\alpha_{i}}\left(t, t_{i}+1 / k\right): k=1,2, \ldots\right\}=0 \quad(i=1, \ldots, n), \\
\lim _{t \rightarrow t_{i}-} \sup \left\{\gamma_{\alpha_{i}}\left(t, t_{i}-1 / k\right): k=1,2, \ldots\right\}=0 \quad(i=1, \ldots, n) . \tag{4}
\end{gather*}
$$

Then problem (1), (2) has one and only one solution.
Corollary 1. Let the vector-function f have bounded variation and let the elements of the matrixfunction $A=\left(a_{i l}\right)_{i, l=1}^{n}$ satisfy the conditions given in Theorem 1, where $c_{i l}(t) \equiv h_{i l} \beta(t)(i, l=$ $1, \ldots, n), \alpha_{i}(t) \equiv \alpha(t)(i=1, \ldots, n), \alpha:[a, b] \rightarrow \mathbb{R}$ is a nondecreasing function satisfying conditions (3) and (4), β is a nondecreasing on $[a, b]$ function having not more than a finite number of discontinuity points, $h_{i i} \in \mathbb{R}$, and $h_{i l} \in \mathbb{R}_{+}(i \neq l, i, l=1, \ldots, n)$. Let, moreover, $\rho r(\mathcal{H})<1$, where $\mathcal{H}=\left(h_{i k}\right)_{i, k=1}^{n}, \rho=\max \left\{\lambda_{m 0}+\lambda_{m 1}+\lambda_{m 2}: m=0,1,2\right\}, \lambda_{00}=2 \pi^{-1}\left(s_{0}(\beta)(b)-s_{0}(\beta)(a)\right)$, and

$$
\begin{aligned}
\lambda_{0 j}=\lambda_{j 0} & =\left(s_{0}(\beta)(b)-s_{0}(\alpha)(a)\right)^{\frac{1}{2}}\left(s_{j}(\beta)(b)-s_{j}(\beta)(a)\right)^{\frac{1}{2}} \quad(j=1,2), \\
\lambda_{m j} & =\frac{1}{2}\left(\mu_{\alpha_{m}} \nu_{\alpha_{m} a l p h a_{j}}\right)^{\frac{1}{2}} \sin ^{-1} \frac{\pi}{4 n_{\alpha_{m}+2}+2} \quad(m, j=1,2) .
\end{aligned}
$$

Then problem (1), (2) has one and only one solution.

Acknowledgement

Supported by the Shota Rustaveli National Science Foundation (Project No. GNSF/ST09-175-3-101).

